Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4957, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104329

RESUMO

Sea-level rise projections rely on accurate predictions of ice mass loss from Antarctica. Climate change promotes greater mass loss by destabilizing ice shelves and accelerating the discharge of upstream grounded ice. Mass loss is further exacerbated by mechanisms such as the Marine Ice Sheet Instability and the Marine Ice Cliff Instability. However, the effect of basal thermal state changes of grounded ice remains largely unexplored. Here, we use numerical ice sheet modeling to investigate how warmer basal temperatures could affect the Antarctic ice sheet mass balance. We find increased mass loss in response to idealized basal thawing experiments run over 100 years. Most notably, frozen-bed patches could be tenuously sustaining the current ice configuration in parts of George V, Adélie, Enderby, and Kemp Land regions of East Antarctica. With less than 5 degrees of basal warming, these frozen patches may begin to thaw, producing new loci of mass loss.


Assuntos
Mudança Climática , Camada de Gelo , Regiões Antárticas , Congelamento , Elevação do Nível do Mar
2.
Nature ; 593(7857): 74-82, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953415

RESUMO

The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2-8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.

3.
J Geophys Res Earth Surf ; 126(10): e2021JF006296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35865452

RESUMO

The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross-basin analysis that investigates the basal conditions across the Pine Island-Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from -24.8 to +37.4 dB with the highest values beneath fast-flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along-flow. Together, these findings highlight the potential for joint airborne radar analysis with ground-based seismic and geomorphological observations to understand variations in the bed properties and cross-catchment interactions of ice streams and outlet glaciers.

4.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

5.
Science ; 367(6484): 1321-1325, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193319

RESUMO

Antarctica contains most of Earth's fresh water stored in two large ice sheets. The more stable East Antarctic Ice Sheet is larger and older, rests on higher topography, and hides entire mountain ranges and ancient lakes. The less stable West Antarctic Ice Sheet is smaller and younger and was formed on what was once a shallow sea. Recent observations made with several independent satellite measurements demonstrate that several regions of Antarctica are losing mass, flowing faster, and retreating where ice is exposed to warm ocean waters. The Antarctic contribution to sea level rise has reached ~8 millimeters since 1992. In the future, if warming ocean waters and increased surface meltwater trigger faster ice flow, sea level rise will accelerate.

6.
Sci Rep ; 9(1): 16649, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757979

RESUMO

In the Amundsen Sea, modified Circumpolar Deep Water (mCDW) intrudes into ice shelf cavities, causing high ice shelf melting near the ice sheet grounding lines, accelerating ice flow, and controlling the pace of future Antarctic contributions to global sea level. The pathways of mCDW towards grounding lines are crucial as they directly control the heat reaching the ice. A realistic representation of mCDW circulation, however, remains challenging due to the sparsity of in-situ observations and the difficulty of ocean models to reproduce the available observations. In this study, we use an unprecedentedly high-resolution (200 m horizontal and 10 m vertical grid spacing) ocean model that resolves shelf-sea and sub-ice-shelf environments in qualitative agreement with existing observations during austral summer conditions. We demonstrate that the waters reaching the Pine Island and Thwaites grounding lines follow specific, topographically-constrained routes, all passing through a relatively small area located around 104°W and 74.3°S. The temporal and spatial variabilities of ice shelf melt rates are dominantly controlled by the sub-ice shelf ocean current. Our findings highlight the importance of accurate and high-resolution ocean bathymetry and subglacial topography for determining mCDW pathways and ice shelf melt rates.

7.
Proc Natl Acad Sci U S A ; 116(30): 14887-14892, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285345

RESUMO

Sea-level rise may accelerate significantly if marine ice sheets become unstable. If such instability occurs, there would be considerable uncertainty in future sea-level rise projections due to imperfectly modeled ice sheet processes and unpredictable climate variability. In this study, we use mathematical and computational approaches to identify the ice sheet processes that drive uncertainty in sea-level projections. Using stochastic perturbation theory from statistical physics as a tool, we show mathematically that the marine ice sheet instability greatly amplifies and skews uncertainty in sea-level projections with worst-case scenarios of rapid sea-level rise being more likely than best-case scenarios of slower sea-level rise. We also perform large ensemble simulations with a state-of-the-art ice sheet model of Thwaites Glacier, a marine-terminating glacier in West Antarctica that is thought to be unstable. These ensemble simulations indicate that the uncertainty solely related to internal climate variability can be a large fraction of the total ice loss expected from Thwaites Glacier. We conclude that internal climate variability alone can be responsible for significant uncertainty in projections of sea-level rise and that large ensembles are a necessary tool for quantifying the upper bounds of this uncertainty.

8.
Nature ; 566(7742): 48-49, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728506
9.
Cryosphere ; 12(4): 1433-1460, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32676174

RESUMO

Earlier large-scale Greenland ice sheet sea-level projections (e.g., those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of the initMIP-Greenland intercomparison exercise is to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project - phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly), and should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap, but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

10.
Curr Clim Change Rep ; 3(4): 291-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32010550

RESUMO

PURPOSE OF REVIEW: This paper reviews the recent literature on numerical modelling of the dynamics of the Greenland ice sheet with the goal of providing an overview of advancements and to highlight important directions of future research. In particular, the review is focused on large-scale modelling of the ice sheet, including future projections, model parameterisations, paleo applications and coupling with models of other components of the Earth system. RECENT FINDINGS: Data assimilation techniques have been used to improve the reliability of model simulations of the Greenland ice sheet dynamics, including more accurate initial states, more comprehensive use of remote sensing as well as paleo observations and inclusion of additional physical processes. SUMMARY: Modellers now leverage the increasing number of high-resolution satellite and air-borne data products to initialise ice sheet models for centennial time-scale simulations, needed for policy relevant sea-level projections. Modelling long-term past and future ice sheet evolution, which requires simplified but adequate representations of the interactions with the other components of the Earth system, has seen a steady improvement. Important developments are underway to include ice sheets in climate models that may lead to routine simulation of the fully coupled Greenland ice sheet-climate system in the coming years.

11.
Nat Commun ; 7: 13243, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27780191

RESUMO

Enhanced submarine ice-shelf melting strongly controls ice loss in the Amundsen Sea embayment (ASE) of West Antarctica, but its magnitude is not well known in the critical grounding zones of the ASE's major glaciers. Here we directly quantify bottom ice losses along tens of kilometres with airborne radar sounding of the Dotson and Crosson ice shelves, which buttress the rapidly changing Smith, Pope and Kohler glaciers. Melting in the grounding zones is found to be much higher than steady-state levels, removing 300-490 m of solid ice between 2002 and 2009 beneath the retreating Smith Glacier. The vigorous, unbalanced melting supports the hypothesis that a significant increase in ocean heat influx into ASE sub-ice-shelf cavities took place in the mid-2000s. The synchronous but diverse evolutions of these glaciers illustrate how combinations of oceanography and topography modulate rapid submarine melting to hasten mass loss and glacier retreat from West Antarctica.

12.
J Geophys Res Earth Surf ; 121(7): 1328-1350, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28163988

RESUMO

The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

13.
Geosci Model Dev ; 9(12): 4521-4545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29697697

RESUMO

Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project - phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet - climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...